esolve man page

esolve — eigensolver for standard eigenvalue problems

Synopsis

esolve matrix_filename evalues_filename evectors_filename residuals_filename iters_filename [options]

Description

This program inputs the matrix data from matrix_filename and solves the standard eigenvalue problem A*x = l*x with the solver specified by options. It outputs the eigenvalues specified by options to evalues_filename and the associated eigenvectors, residual norms, and numbers of iterations to evectors_filename, residuals_filename, and iters_filename respectively in the extended Matrix Market format (see Appendix of Lis User Guide). Both the Matrix Market format and the Harwell-Boeing format are supported for the matrix filename.

Options

The following options are supported:

-e eigensolver

The following options are supported for eigensolver:

-e {pi|1}
Power
-e {ii|2}
Inverse
-e {rqi|3}
Rayleigh Quotient
-e {cg|4}
CG
-e {cr|5}
CR
-e {jd|6}
Jacobi Davidson
-e {si|7}
Subspace
-ss [1]
The size of the subspace
-e {li|8}
Lanczos
-ss [1]
The size of the subspace
-e {ai|9}
Arnoldi
-ss [1]
The size of the subspace
-i linear solver

The following options are supported for inner linear solver:

-i {cg|1}
CG
-i {bicg|2}
BiCG
-i {cgs|3}
CGS
-i {bicgstab|4}
BiCGSTAB
-i {bicgstabl|5}
BiCGSTAB(l)
-ell [2]
The degree l
-i {gpbicg|6}
GPBiCG
-i {tfqmr|7}
TFQMR
-i {orthomin|8}
Orthomin(m)
-restart [40]
The restart value m
-i {gmres|9}
GMRES(m)
-restart [40]
The restart value m
-i {jacobi|10}
Jacobi
-i {gs|11}
Gauss-Seidel
-i {sor|12}
SOR
-omega [1.9]
The relaxation coefficient omega (0<omega<2)
-i {bicgsafe|13}
BiCGSafe
-i {cr|14}
CR
-i {bicr|15}
BiCR
-i {crs|16}
CRS
-i {bicrstab|17}
BiCRSTAB
-i {gpbicr|18}
GPBiCR
-i {bicrsafe|19}
BiCRSafe
-i {fgmres|20}
FGMRES(m)
-restart [40]
The restart value m
-i {idrs|21}
IDR(s)
-irestart [2]
The restart value s
-i {idr1|22}
IDR(1)
-i {minres|23}
MINRES
-i {cocg|24}
COCG
-i {cocr|25}
COCG
-p preconditioner

The following options are supported for preconditioner:

-p {none|0}
None
-p {jacobi|1}
Jacobi
-p {ilu|2}
ILU(k)
-ilu_fill [0]
The fill level k
-p {ssor|3}
SSOR
-ssor_w [1.0]
The relaxation coefficient omega (0<omega<2)
-p {hybrid|4}
Hybrid
-hybrid_i [sor]
The linear solver
-hybrid_maxiter [25]
The maximum number of the iterations
-hybrid_tol [1.0e-3]
The convergence criterion
-hybrid_w [1.5]
The relaxation coefficient omega of the SOR (0<omega<2)
-hybrid_ell [2]
The degree l of the BiCGSTAB(l)
-hybrid_restart [40]
The restart values of the GMRES and Orthomin
-p {is|5}
I+S
-is_alpha [1.0]
The parameter alpha of I+alpha*S(m)
-is_m [3]
The parameter m of I+alpha*S(m)
-p {sainv|6}
SAINV
-sainv_drop [0.05]
The drop criterion
-p {saamg|7}
SA-AMG
-saamg_unsym [false]
Select the unsymmetric version (The matrix structure must be symmetric)
-saamg_theta [0.05|0.12]
The drop criterion
-p {iluc|8}
Crout ILU
-iluc_drop [0.05]
The drop criterion
-iluc_rate [5.0]
The ration of maximum fill-in
-p {ilut|9}
ILUT
-ilut_drop [0.05]
The drop criterion
-ilut_rate [5.0]
The ration of maximum fill-in
-adds true
Additive Schwarz
-adds_iter [1]
The number of the iteration

Other Options for eigensolver:

-emaxiter [1000]
The maximum number of the iterations
-etol [1.0e-12]
The convergence criterion
-eprint [0]

The output of the residual history

-eprint {none|0}
None
-eprint {mem|1}
Save the residual history
-eprint {out|2}
Output it to the standard output
-eprint {all|3}
Save the residual history and output it to the standard output
-ie [ii]
The inner eigensolver used in Subspace, Lanczos and Arnoldi
-shift [0.0]
The amount of the shift
-initx_ones [true]

The behavior of the initial vector x_0

-initx_ones {false|0}
Given values
-initx_ones {true|1}
All values are set to 1
-omp_num_threads [t]
The number of the threads (t represents the maximum number of the threads)
-estorage [0]
The matrix storage format
-estorage_block [2]
The block size of the BSR and BSC formats
-ef [0]

The precision of the eigensolver

-ef {double|0}
Double precision
-ef {quad|1}
Quadruple precision

Other options for inner linear solver:

-maxiter [1000]
The maximum number of the iterations
-tol [1.0e-12]
The convergence criterion
-print [0]

The output of the residual history

-print {none|0}
None
-print {mem|1}
Save the residual history
-print {out|2}
Output it to the standard output
-print {all|3}
Save the residual history and output it to the standard output
-scale [0]

The scaling

-scale {none|0}
No scaling
-scale {jacobi|1}
The Jacobi scaling
-scale {symm_diag|2}
The diagonal scaling
-initx_zeros [true]

The behavior of the initial vector x_0

-initx_zero {false|0}
Given values
-initx_zero {true|1}
All values are set to 0
-omp_num_threads [t]
The number of the threads (t represents the maximum number of the threads)
-storage [0]
The matrix storage format
-storage_block [2]
The block size of the BSR and BSC formats
-f [0]

The precision of the linear solver

-f {double|0}
Double precision
-f {quad|1}
Quadruple precision

See Lis User Guide for full description.

Exit Status

The following exit values are returned:

0
The process is normally terminated
unspecified
An error occurred

See Also

lis(3), lsolve(1), hpcg_kernel(1), hpcg_spmvtest(1), spmvtest1(1), spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1), spmvtest5(1)

http://www.ssisc.org/lis/
http://math.nist.gov/MatrixMarket/

Referenced By

hpcg_kernel(1), hpcg_spmvtest(1), lis(3), lsolve(1), spmvtest1(1), spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1), spmvtest5(1).

23 Oct 2016 Man Page Utility Commands